Р|С+С+Р#Р# С|Р#Р#С|Р# РґР#С’ РїС-Р#С+Р#С|С|Р#Р#РЅР+Р#Р#Р#
 
Тел: 8 981 89 34 982, 8 812 380 65 72 доб. 210; E-mail: info@alitmix.ru
 
 
 
 
 
 

Гидроизоляционные материалы, получаемые по технологии сухих смесей *


Э.Л. Большаков,
к.т.н, руководитель АНТЦ АЛИТ,
Санкт-Петербург


В статье дается классификация сухих смесей для гидроизоляционных работ, анализ основных принципов проектирования гидроизоляционных систем на основе технологии сухих смесей и примеры их реализации на основе опыта, накопленного в АНТЦ "АЛИТ".


Здания и сооружения в процессе эксплуатации подвергаются воздействиям воды и влаги. Увлажнение конструкций зданий может быть связано как с внешними воздействиями - осадки, повышенная влажность воздуха, грунтовые воды и т.д., так и с технологическими процессами. В результате увлажнения происходит снижение долговечности конструкций, вследствие, коррозии бетона, металлических закладных частей и арматуры, снижение прочности бетона при циклическом замораживании и оттаивании и т.п. Ухудшаются эксплуатационные показатели зданий: снижение теплозащитных свойств ограждающих конструкций, образование выцветов и высолов на поверхности конструкций, ухудшение санитарно-гигиенических характеристик помещений из-за повышения влажности воздуха и образования плесени, грибов, водорослей и др. Поэтому обеспечение герметичности конструкций от воды и влаги является важной инженерной задачей при строительстве и эксплуатации зданий и сооружений.


Гидроизоляционные работы считаются одними из самых сложных и рискованных в строительстве. Это связано с необходимостью обеспечения основного требования к гидроизоляции - высокой надежности. Достаточно одной фильтрующего или увлажненного участка изолированной конструкции, чтобы привести к серьезным проблемам в эксплуатации зданий (сооружений) и необходимости устройства дополнительной гидроизоляции. Разнообразные гидрологические и влажностные условия эксплуатации, конструктивные особенности зданий (сооружений) требуют практически к каждому конкретному объекту индивидуальное проектное решение и выбор соответствующих материалов.


Одним из определяющих фактором обеспечения надежности гидроизоляции является выбор гидроизоляционного материала. Сегодня на рынке предлагается большое количество материалов различных составов и торговых марок. При этом каждый из гидроизоляционных составов имеет определенную область применения, границы которой определяются техническими характеристиками материала, экономической эффективностью и технологическими особенностями применения (табл. 1).
Одним из новых и перспективных направлений в строительном материаловедении являются технологии, основанные на применении сухих модифицированных смесей [1-3], использование которых позволяет решать широкий круг задач, в том числе и при герметизации зданий (сооружений) [4].


В настоящей статье даются классификация сухих смесей для гидроизоляционных работ, анализ основных принципов проектирования гидроизоляционных систем на основе технологии сухих смесей и примеры их реализации на основе опыта, накопленного в АНТЦ "АЛИТ".


Таблица 1.
Основные виды гидроизоляции и материалы, используемые при их устройстве


Тип гидроизоляции

Наименование материалов

Ровность изолируемой поверхности

Защита гидро­изоляционного слоя

Трещиностой-кость изолируемой конструкции

1

Первичная

Бетоны высокой водо­непроницаемости на основе портландцемента, напрягающих цементов, шлако-щелочных вяжущих и др.

Не требуется

Устанавливается расчетом

2

Оклеечная

Рулонные материалы на основе модифицированных битумных и полимерных материалов

Ровная

Необходима

Все группы по трещиностойкости

3

Обмазочная эластичная

Полимерные, битумо-полимерные, цементно-полимерные мастики

Нетрещиностойкие (раскрытие трещин до 1 мм)

4

Обмазочная жесткая

Цементно-полимерные мастики

Не требуется

Трещиностойкие

5

Пропиточная

Кремнийорганические дисперсии, инъекционные цементные и глинистые растворы, цементные составы капиллярного действия, жидкое стекло, сера

6

Штукатурная

Цементные растворы, полимеррастворы, асфальтовые растворы, тркретрастворы

Неровная

7

Монтируемая

Металлические, полимерные и картонно-бентонитовые листы, полимерные пленки и др.

Необходима

Все группы по трещиностойкости

8

Закладочная

Гидрофобные порошки, закладочные массы с эффектом расширения при увлажнении

Грубо неровная



Технологии и материалы, применяемые для производства сухих гидроизоляционных смесей

В отличие от растворов и бетонов, готовых к употреблению, сухие смеси доставляются на объекты строительства в сухом виде и смешиваются с водой непосредственно перед использованием. Сухие смеси представляют собой смесь вяжущих, заполнителей (наполнителей) и различных добавок. Основные материалы, используемые для производства гидроизоляционных материалов на основе сухих смесей, представлены в табл. 2. Для сухих гидроизоляционных смесей применяются только гидравлические вяжущие и заполнители из плотных горных пород с минималь¬ным водопоглощением. В технологию изготовления сухих смесей входят следующие основные операции: сушка и фракционирование песка, дозирование компонентов с последующим смешением и фасовкой готовой смеси [5].


Таблица 2
Основные материалы для производства сухих гидроизоляционных смесей


Вяжущие

Наполнители

Химические добавки

Портландцемент, белый цемент, глиноземистый цемент, напрягающий и расширяющийся цемент

Кварцевый песок, перлит, каолин, слюда, бентонит, микрокремнезем, зола-уноса, пигменты, гранитный щебень

Пластификаторы, стабилизирующие и водоудерживающие, диспергируемые полимерные порошки, замедлители, ускорители, загустители, порообразующие и антивспенивающие добавки, гидрофобизаторы


Классификация сухих смесей для гидроизоляции


Существующие методы герметизации зданий и сооружений можно разделить на две группы: первичные и вторичные [5]. Для первичной защиты в качестве гидроизоляции используются непосредственно ограждающие конструкции из бетона и железобетона соответствующей водонепроницаемости. При использовании вторичной защиты производится дополнительная гидроизоляция ограждающих конструкций. Для этих целей применяются проникающая, штукатурная, обмазочная, закладочная гидроизоляции (рис. 1). Каждый из этих видов гидроизоляционных материалов применяется для конкретных условий эксплуатации и конструктивных особенностей зданий.


В зависимости от крупности заполнителей (наполнителей) сухие смеси подразделяются на бетонные с максимальной крупностью заполнителя более 5 мм, растворные - до 5 мм и дисперсные - до 0,63 мм. Дисперсные смеси в свою очередь подразделяются на круш-дисперсные с крупностью наполнителей до 0,63 мм, мелкодисперсные - до 0,315 мм и тонкодисперсные - до 0,14 мм. [3]. Максимальная крупность заполнителей (наполнителей) определяет минимальную толщину рабочего слоя.

Первичная гидроизоляция

Первичная гидроизоляция применяется для герметизации зданий и сооружений при новом строительстве. В этом случае, в качестве гидроизоляционного экрана служит сама ограждающая конструкция. Первичная гидроизоляция, как правило, выполняется из бетонных и железобетонных конструкций из бетона с соответствующей водонепроницаемостью. Устройство гидроизоляции осуществляется в монолитном или сборном варианте. В монолитном варианте применяются сухие бетонные смеси, а в сборном - растворные смеси для герметизации швов между сборными конструкциями (см. рис. 1).


Многочисленные факторы, от которых зависит проницаемость бетона, можно разделить на три группы (см. рис. 2) [6-8]:
1.      Качество исходных материалов.
2.      Подбор оптимальных соотношений между компонентами смесей.
3.      Технологии изготовления и температурно-влажностный режим выдерживания бетона.


Для получения водонепроницаемого бетона важное значение имеет подбор заполнителей (наполнителей) по гранулометрическому составу. При оптимальном подборе формируется наиболее плотная упаковка заполнителей и минимизируется водоцементное отношение, что приводит к резкому повышению водонепроницаемости. Кроме того, повышается седиментационная устойчивость смесей, что особенно актуально при бетонировании вертикальных конструкций.


Технология сухих смесей, в отличие от традиционной, позволяет фракционировать как крупный, так и мелкий заполнитель и подбирать смеси заполнителей оптимальных по гранулометрическому составу. Эта возможность в совокупности с рациональным подбором состава смеси и вида заполнителей дает возможность получать экономичные бетоны с маркой по водонепроницаемости W12 и выше с повышенной устойчивостью к расслаиванию и водоотделению. Экономичность бетонов, получаемых по технологии сухих смесей, достигается за счет отказа от применения дорогостоящих химических и специальных вяжущих добавок.


На основании проведенного анализа в АНТЦ "АЛИТ" разработан состав сухой бетонной смеси для бетонов с повышенной водонепроницаемостью (АЛИТ СБВ-11) на основе портландцемента, которые предназначены для возведения монолитных бетонных и железобетонных конструкций зданий и сооружений различного назначения. Физико-механические показатели представлены в таблице 3.

Таблица 3.

Физико-механические показатели растворов и бетона на основе сухих смесей АЛИТ


Наименование показателя

Ед. изм.

АЛИТ ГРР-1

АЛИТ ГРР-1

АЛИТ СБВ-11

1

Предел прочности при сжатии, не менее

МПа

30,0

25,0

45,0

2

Предел прочности на растяжение при изгибе, не менее

МПа

6,0

5,0

5,3

3

Прочности сцепления со старым бетоном, не менее,

МПа

1,2

1,2

4

Марка по водонепроницаемости

W 12

W8

W12

5

Марка по морозостойкости

F200

F200

F300

6

Водоудерживающая способность, не менее

%

95

95

7

Расслаиваемость, не более

%

5

5

8

Линейная деформация, %

 

+0,07

9

Расход на 1 мм толщины

кг/м2

1,5

1,5


Сухая бетонная смесь доставляется на объекты строительства в биг-бэгах или в специальных контейнерах. Приготовление бетонной смеси производится порционно непосредственно перед бетонированием. Такая схема позволяет избежать снижения технологических свойств бетонной смеси из-за задержек при транспортировке и бетонировании.

Принципиальным отличием АЛИТ СБВ-11 от бетонов, полученных по обычной технологии, является высокая однородность по физико-механическим свойствам, что обеспечивает высокую надежность за счет использования фракционированных заполнителей. Благодаря этому сухие бетонные смеси являются эффективными материалами для первичной гидроизоляции при монолитном способе возведения конструкций.

При устройстве первичной гидроизоляции из сборных железобетонных конструкций применяются сухие растворные смеси для герметизации швов. Данный вид смесей применяется для жестких и полужестких стыков, что ограничивает область их применения.

Кроме низкой проницаемости непосредственно самого раствора он должен обеспечивать непроницаемость контакта раствора со сборной конструкцией, а также повышенную деформативность и трещиностойкость шва при силовых воздействиях на конструкцию. Это достигается использованием специальных видов вяжущего (напрягающих или расширяющихся цементов) или путем введения в смесь расширяющихся добавок.

В качестве примера приведем сухую смесь для герметизации швов бетона АЛИТ ГРР-1, физико-механические показатели которого представлены в табл. 3. В состав смеси, кроме вяжущих и заполнителей, входит комплексная добавка, обеспечивающая расширение раствора, высокую деформативность и непроницаемость контакта раствор - конструкция. АЛИТ ГРР-1 может использоваться для гирметизации стыковых соединений и сопряжений, вводов коммуникаций, а так же для защиты и дополнительной гидроизоляции полимерных уплотняющих составов.


Вторичная гидроизоляция

 

Сухие смеси для проникающей гидроизоляции

Сухие смеси для проникающей гидроизоляции подразделяются на смеси капиллярного действия и инъекционные (см. рис. 1).

Сухие смеси для проникающей гидроизоляции капиллярного действия представляют собой смесь портландцемент (белого цемента), специально обработанного наполнителя и химически активных веществ.


На российском рынке представлены несколько известных марок этих смесей для проникающей гидроизоляции западных производителей - Вандекс, Ксайпекс, Пенетрон, Осмосил, Торосил и др. В последние годы на рынке появились отечественные смеси - Кальматрон, Лахта и др.


Принцип действия проникающей гидроизоляции основан на проникновении в бетон химически активных элементов по капиллярным порам цементного камня и микротрещинам в бетоне, с последующим их химическим взаимодействием с минералами цемента и конденсацией на поверхности пор нитевидных игольчатых водонерастворимых кристаллов. В результате чего формируется так называемый "кристаллический барьер", который препятствует проникновению воды. Однако при этом бетон остается проницаем для воздуха [9].


Интересный эффект обнаружен Н.В.Тимофеевой [10]. При обработке образцов бетона смесями проникающими действиями происходит резкое повышение водопоглощения образцов. Эти данные коррелируются с нашими натурными обследованиями железобетонных конструкций набережной Обводного канала в Санкт-Петербурге, которые были обработаны Пенетроном. Высота капиллярного подъема воды на обработанной поверхности достигала 600 мм. Те есть бетон при обработке системами капилярного действия непроницаем в направлении перпендикулярном обработанной  плоскости ("кристалического барьера"), а в параллельном направлении влага может перемещаться по капиллярным порам. Этот эффект необходимо учитывать при проектировании гидроизоляции на основе этих смесей.


Сухие смеси для проникающей гидроизоляции капиллярного действия используются для материалов с развитой капиллярной пористостью, таких как цементные бетоны и растворы. Они не могут быть использованы для гидроизоляции плотных материалов - асбестоцементных конструкций и прессованных изделий, а также конструкций поверхности, которых пропитаны маслом, смазкой и т.п.


Инъекционные сухие смеси применяются для восстановления водонепроницаемости бетонных и железобетонных конструкций, каменной и кирпичной кладки путем инъекции в материал конструкций и кальматации макропор и трещин.


Сухие смеси для обмазочной гидроизоляции
Обмазочная гидроизоляция представляет собой тонкое многослойное непроницаемое покрытие толщиной 1-3 мм, нанесенное на поверхность изолируемой конструкции. Для этого вида изоляции используются сухие смеси, состоящие из гидравлических вяжущих, наполнителей и полимерных и минеральных добавок.


Согласно классификации, данной в работе [2], смеси используемые для обмазочной гидроизоляции в зависимости от жесткости готового покрытия подразделяются жесткие, полуэластичные, эластичные (см. рис. 1).


В отличие от гидроизоляции проникающего действия обмазочная гидроизоляция на основе сухих смесей может быть использована для материалов практически с любой пористостью, покрытие имеет высокую деформативность и изолирует конструкцию не только от воды, но и от фильтрации воздуха и газов. Так же как и гидроизоляция проникающего действия покрытия из обмазочных смесей незначительно увеличивают массу конструкции. [4]


Сухие смеси для штукатурной гидроизоляция
Для проведения гидроизоляционных работ обмазочными составами, капиллярного действия, рулонными материалами и др. необходимо иметь относительно ровную исходную поверхность, что приводит к дополнительной операции по выравниванию обрабатываемой поверхности. Кроме того, при использовании эластичных материалов требуется конструкционная защита гидроизоляционного покрытия, а для эластичной обмазочной гидроизоляции - армирование (табл. 4). В случае применения штукатурной гидроизоляции появляется возможность решить две задачи одновременно: выровнять поверхность и обеспечить ее герметичность, при этом не требуется дополнительной защиты и армирования. Это определяет высокую технико-экономическую эффективность применения штукатурной гидроизоляции.


В АНТЦ "АЛИТ" разработан состав сухой смеси для штукатурной гидроизоляции АЛИТ ГР-1, которая состоит из гидравлических вяжущих, фракционированных наполнителей и комплекса химических добавок. Она может быть использована при устройстве штукатурной гидроизоляции кирпичных, бетонных и железобетонных конструкций, а также напольной гидроизоляции на объектах хозяйственного водоснабжения, плавательных бассейнах, подземных сооружениях, ванных комнатах, балконах и др.


В подборе состава смеси и добавок заложена пятиуровневая система защиты для обеспечения максимальной надежности гидроизоляционного покрытия. Кроме того, разработана специальная технология укладки смеси, которая также увеличивает степень надежности и долговечности покрытия, что позволяет наносить растворную смесь, как механизированными способами, так и вручную. За счет введения дополнительных добавок-модификаторов можно в широких пределах изменять скорость твердения и реологические свойства гидроизоляционного раствора для конкретных условий производства работ и эксплуатации. Базовые физико-механические показатели гидроизоляционного раствора на основе АЛИТ ГР-1 представлены в табл. 3.


Сухая смесь АЛИТ ГР-1 является базовой для различных модификаций: растворы с повышенной морозостойкостью; смеси для работ при отрицательных температурах; растворы с ингибирующим действием для предотвращения коррозии металла; быстротвердеющие составы, биоцидные смеси и др.


В период с 1996 по 1999 гг. на станциях Петербургского метрополитена был выполнен комплекс работ по замене турникетов старой конструкции на новые (рис. 3). Работы на станции должны были проведены в сжатые сроки - в течение 2,5 суток (станции закрывались на выходные дни). Основным лимитирующим этапом по времени являлось устройство гидроизоляции и покрытия пола. При использовании обмазочной или оклеечной гидроизоляции уложиться в требуемые сроки не представлялось возможным. Поэтому на базе состава сухой смеси АЛИТ ГР-1 в АНТЦ "АЛИТ" был разработан модифицированный состав, который отличался от базового состава более быстрым набором прочности и высокой текучестью, что позволило без применения вибрации укладывать раствор. В результате время работ за счет быстрого набора прочности раствора, отказа от операций выравнивания исходной поверхности и отсутствия необходимости ухода за уложенным раствором было сокращено до 8 часов.


Технология работ включала восемь основных этапов. На первом этапе производилась подготовка и обеспыливание поверхности. Параллельно производилось перемешивание сухой смеси с водой. Подвижность смеси после перемешивания должна соответствовать классу Пк=4 (осадка конуса СтройЦНИЛ1 - 4 см). Перед повторным перемешиванием раствор выдерживался в течение 10-15 мин.


Укладка смеси производилась в три этапа. С начала укладывался первый слой, сразу после его выравнивания наносился слой сухой смеси из расчета 2-4 кг на 1 м2. Через 10-20 мин производилась затирка поверхности. Второй слой гидроизоляционного раствора укладывался через один час после затирки. В случае если облицовка пола производилась крупноразмерными гранитными плитами, то их укладка начиналась сразу же на растворную смесь второго слоя.

При использовании керамической плитки ее укладка производилась на быстротвердеющий плиточный раствор АЛИТ СПР-1В.


Проведенные натурные испытания показали высокую надежность гидроизоляционных покрытий, выполненных по этой технологии. Протечки в служебных помещениях под турникетами отсутствуют.


Таким образом, опыт, накопленный по применению сухой смеси для гидроизоляционного раствора АЛИТ ГР-1, показал высокую эффективность и надежность применения штукатурной гидроизоляции, получаемой на основе технологии сухих смесей.


Сухие смеси для закладочной гидроизоляции
Закладочная гидроизоляция применяется для герметизации подземных сооружений и конструкций зданий. Она закладывается в зазор между изолируемой конструкцией и грунтом специальных масс: гидрофобных порошков и смеси с эффектом расширения при увлажнении. В
результате формируется водонепроницаемый барьер. Простейшим вариантом закладочной гидроизоляции является глиняный замок, который широко использовался до конца XIX столетия.

    
Закладочная гидроизоляция применяется в случаях, когда необходимо герметизировать грубо неровные поверхности (например: бутовая кладка, сильно разрушенная кирпичная кладка и т.п.).


Основные принципы проектирования гидроизоляции на основе сухих смесей


Для обеспечения высокой надежности гидроизоляции на основе сухих смесей необходимо соблюдать следующие принципы [4]:


1. Принцип дублирования. Высокая степень надежности гидроизоляции предполагает реализацию мероприятий, предотвращающих возникновение сквозных дефектов в процессе на
несения покрытия. Как правило, для снижения вероятности возникновения таких дефектов
необходимо предусматривать нанесение нескольких слоев гидроизоляции. Особенно хорошие
результаты получены при дублировании различных систем гидроизоляции, например: инъекция + штукатурная изоляция, гидрофобная обработка поверхности + обмазочная гидроизоляция и т.д.
2. Принцип одной функции. Согласно этому принципу гидроизоляция должна выполнять
только изолирующую функцию. Гидроизоляционное покрытие не должно подвергаться силовым,
истирающим и другим воздействиям, способным привести к деградации или нарушению оплошности покрытия. Поэтому при наличии таких воздействий в проекте необходимо предусматривать защиту гидроизоляционного покрытия.
3. Принцип совместимости. Гидроизоляционное покрытие и основание должны иметь
близкие значения коэффициентов температурного расширения, что позволит предотвратить
возникновение в покрытии температурных трещин. Технология устройства гидроизоляции и
выбор материалов должны обеспечивать прочный контакт основания и покрытия.
4. Принцип многовариантности. Решение о выборе системы гидроизоляции должно быть сделано на основе многовариантного анализа технически конкурентных вариантов. Это позволяет минимизировать затраты на устройство гидроизоляции.


Выводы


1. Применение технологии сухих смесей открывает широкие возможности для устройства гидроизоляции при строительстве, ремонте, реконструкции зданий и сооружений. При этом каждый вид смесей имеет конкретную область применения, которая определяются структурой материала, ровностью поверхности, степенью трещиностойкости и устойчивостью к осадкам изолируемой конструкции, технологической целесообразностью при устройстве гидроизоляции и экономической эффективностью.


2. Основные преимущества гидроизоляций на основе сухих смесей перед битумно-полимерными, полимерными мастиками и рулонными материалами следующие: высокая прочность сцепления и совместимость с различными материалами (бетон, кирпич, металл и др.), высокая паронепроницаемость, возможность нанесения на влажные и мокрые поверхности, гигиеничность и экологическая безвредность, высокие физико-механические показатели и долговечность. К недостатком можно отнести высокую жесткость гидроизоляционных покрытий.


3.  Для обеспечения высокой надежности при проектировании гидроизоляции на основе сухих смесей необходимо учитывать следующие принципы: "дублирования", "одной функции" и "многовариантность".


Литература
1.      Сухие смеси в современном строительстве/ Безбородов В. А., Белан В. И., Мешков П. И. и др. Новосибирск, 1998. 94 с.
2.      Сухие строительные смеси: Справ, пособие/ Е.К.Карапузов, Г.Лутц, X.Герольд и др. Киев, 2000. -226 с.
3.      Большаков Э.Л. Производство сухих строительных смесей в России: современное состояние и перспективы //Сб. докл. 2-й Межд. науч.-техн. конференции "Современные технологии сухих смесей в строительстве
MixBUILD". СПб., 2000. С. 7-13.
4.      Большаков Э.Л. Сухие смеси для гидроизоляционных работ// Строительные материалы. 1999. № 3. С. 28-29.
5.      Телешов А.В., Сапожников В.А. Заводы по производству сухих смесей //Сб. докл. 2-й Межд. науч.-техн. конференции "Современные технологии сухих смесей в строительстве MixBUILD". СПб., 2000. С. 35-42.
6.      Чеховский Ю.В. Понижение проницаемости бетона. М., 1968.192 с.  ?
7.      Шейкин А.Е., Чеховский Ю.В., БруссерМ.И. Структура и свойства цементных бетонов. М., 1979.344 с.
8.      Большаков Э.Л., Сухие смеси для бетонов с повышенной водонепроницаемостью // Строительные материалы. 1998. № 11. С. 24-25.
9.      Хаютин Ю.Г. Повышение плотности бетона за счет создания "кристаллизационного барьера". Бетон и железобетон, 1996 г., № 3, С. 21-24.

10.     Тимофеева Н.В., Мизандронцев Г.А. Испытания новых отечественных и зарубежных материалов для защитных покрытий бетонных и железобетонных сооружений.//Наст. сб., С. 86-91.
11.     Защита заглубленных и подземныз сооружений Петербурга от подземных вод / Фадеев А.Б., Иноземцев В.К., Лукин В.А. и др. СПбГАСУ, 2000,25 с.



Наверх


К списку статей


* Опубликована: Сборник докладов 1-й Международной научно-технической конференции "Гидроизоляционные материалы - XXI век. AquaSTOP" - СПб, ЭЛБИ-СПБ, 2001